
SpartanMC

SpartanMC
I2C Master



SpartanMC



SpartanMC

I2C Master i

Table of Contents

1. Communication .....................................................................................................2

2. Bus Arbitration ..................................................................................................... 3

3. Peripheral Registers ............................................................................................ 3

3.1. I2C Register Description ..................................................................................... 3

3.2. CONTROL Register ............................................................................................ 4

3.3. TX Register ......................................................................................................... 4

3.4. RX Register .........................................................................................................4

3.5. COMMAND Register ........................................................................................... 5

3.6. STATUS Register ................................................................................................5

3.7. I2C C-Header i2c_master.h for Register Description .......................................... 6

3.8. Basic Usage of the I2C Registers .......................................................................8



SpartanMC

I2C Master ii



SpartanMC

I2C Master i

List of Figures

1 I2C block diagram ................................................................................................... 1

2 SCL, SDA Timing for Data Transmission ............................................................... 2

3 I2C Acknowledge .................................................................................................... 2

4 I2C Arbitration ......................................................................................................... 3



SpartanMC

I2C Master ii



SpartanMC

I2C Master i

List of Tables

4 I2C registers ............................................................................................................4

4 I2C control register layout .......................................................................................4

4 I2C transmit data register layout .............................................................................4

4 I2C receive data register layout .............................................................................. 4

4 I2C command register layout .................................................................................. 5

4 I2C status register layout ........................................................................................ 5



SpartanMC

I2C Master ii



SpartanMC

I2C Master 1

I2C Master

I2C (also referred to as two-wire interface ) is a serial bus which allows for connection
of multiple master devices to multiple slave devices, only using two single bidirectional
lines:

• SCL ( serial clock line )

• SDA ( serial data line )

Both lines need to be pulled up with resistors. Because of this, both of them remain
simply high, if there is no communication between any master and slave. The clock line
needs to be driven by a master. Using this clock, the data will be transmitted bit by bit
between the master and the corresponding slave over the data line.

The SpartanMC I2C master controller is a quite simple peripheral device which supports
basic I2C functions. The following block diagram gives an overview of its structure and
interfaces to both the slave and SpartanMC side.

SpartanMC

Databus

Prescaler Register

Com m and Register

Status Register

Transm it  Register

Cont rol Register

Receive Register

SCL

SDA

IO Shift  Register

Byte Com m and Bit  Com m and

Controller Cont roller

clock generator

Figure 1: I2C block diagram

The I2C master controller can be configured and controlled by setting the writable reg-
isters such as the Control , Command and Transmit register on the Spartan-
MC side with flags, commands, slave addresses or data to be sent. With respect to
the current settings, it will operate autonomously, i.e. send/receive data to/from slave.
After current operation, the corresponding bits in the Status register will be set and
the received data will be written in the Receive register. Both of the Status and
Receive register are read-only.



SpartanMC

I2C Master 2

1. Communication

As mentioned above, both SDA and SCL remain high, if there is no transmission be-
tween any master and slave. In this case, the I2C bus is considered as idle and can
be used by any master. To start a transmission, SDA is pulled low while SCL remains
high. After the start signal, 8-bit data packets will be transferred, one bit on each rising
edge of SCL. Since multiple slaves can be attached to the I2C bus, each of them should
have a unique 7-bit address so that it can be distinguished from the other slaves. As the
first packet, the master should always put the 7-bit address of the target slave and one
direction bit on the bus. If the direction bit is 1, the master wants to read data from the
slave, otherwise write data to it. After the corresponding slave has received the start
packet, it needs to send 1-bit acknowledge back to the master as response. After this
handshake, the master can begin reading or writing data. If the current transmission is
over, SDA must be released to float high again which is used as stop signal and idle
marker. Except for the start and stop signal, the SDA line only changes while SCL is
low. The timing diagram below shows an example transmission of two data packets.

Figure 2: SCL, SDA Timing for Data Transmission

Each time after a data packet has been transmitted in one direction, an acknowledge
bit needs to be transmitted in the other direction, as shown in the following diagram.

Figure 3: I2C Acknowledge



SpartanMC

I2C Master 3

If the transmitter gets a "0" (ACK) as acknowledge, the transmission has succeeded.
Otherwise, if it gets a "1", meaning that:

• If the transmitter is master

• Unknown slave

• Busy slave

• Unknown command

• If the transmitter is slave

• Stop request from the master

2. Bus Arbitration

Since multiple masters can be connected to an I2C bus, several of them may start the
transmission simultaneously. To overcome this situation, all masters monitor SDA and
SCL continuously. If one of them detects that SDA is low while it should actually be
high on the next rising edge of SCL, it will stop the current transmission immediately.
This process is called arbitration and illustrated in the following diagram.

DATA1

DATA2

SDA

SCL

transm it ter 1 loses arbit rat ion

DATA1    SDA

S

Figure 4: I2C Arbitration

3. Peripheral Registers

3.1. I2C Register Description

The I2C peripheral provides five 18-bit registers which are mapped to the SpartanMC
address space. In the following, the layout of each register is described in more detail.



SpartanMC

I2C Master 4

Table 1: I2C registers

Offset Name Access Description

0 CONTROL r/w Contains a 16-bit clock divider and two enable
bits for the I2C master itself and the interrupt
controller respectively.

1 TX w Contains the current byte to be sent.

2 RX r Contains the current recieved byte.

3 COMMAND w Used to set I2C commands.

4 STATUS r Contains the controller status flags.

3.2. CONTROL Register

Table 2: I2C control register layout

Bit Name Access Default Description

0-15 PRESCALER r/w 65535 This field is used to set the clock frequency of the SCL
line. To change its value the CORE_EN bit must be set
to zero. The prescaler factor can be dermined through
the following equation: prescaler = (peripheral_clock /
(5 * desired_SCL)) -1.

16 CORE_EN r/w 0 Enable I2C core. If set to 1 the I2C core is enabled.
(The prescaler value remains constant.)

17 IEN r/w 0 Enable interrupt. If set to 1 the interrupt is enabled.

3.3. TX Register

Table 3: I2C transmit data register layout

Bit Name Access Default Description

0-7 TX w 0 Register for data to be sent.

8-17 - w 0 Not used.

3.4. RX Register

Table 4: I2C receive data register layout

Bit Name Access Default Description

0-7 RX r 0 Register for received data.

8-17 - r 0 Not used. (Read as zero)



SpartanMC

I2C Master 5

3.5. COMMAND Register

Table 5: I2C command register layout

Bit Name Access Default Description

0 IACK r/w 0 Interrupt acknowledge. If set to 1 the pending interrupt
will be cleared.

1-2 - r/w 0 Not used.

3 ACK r/w 0 If set to 0, acknowledge (0) will be sent. Otherwise, not
acknowledge (1) will be sent.

4 WR r/w 0 If WR = 1, the data in the TX register will be written to
slave.

5 RD r/w 0 If RD = 1, the RX register will be filled with data from
slave.

6 STO r/w 0 Send stop signal.

7 STA r/w 0 Send (re-)start signal.

8-17 - r/w 0 Not used.

Note: If both WR and RD are set to 1 at the same time, the read operation will
be carried out.

3.6. STATUS Register

Table 6: I2C status register layout

Bit Name Access Default Description

0 IF r 0 This bit is set to 1 when an interrupt is pending and
IEN in Control register has been set. An interrupt
occurs, if:

• A byte transfer has been completed.

• The arbitration has been lost.

1 TIP r 0 Is set to 1 when a transfer is in progress.

2-4 - r 0 Not used.

5 AL r 0 Is set to 1 if the arbitration has been lost.

6 I2C_BUSY r 0 Is set to 1 after a start signal has been detected and
set to 0 after a stop signal has occurred.

7 RX_ACK r 0 Is set to 1 if a not acknowledge (NAK) has been
received.

8-17 - r 0 Not used.



SpartanMC

I2C Master 6

3.7. I2C C-Header i2c_master.h for Register Description

#ifndef __I2C_MASTER_
#define __I2C_MASTER_

#ifdef __cplusplus
extern "C" {
#endif

/*
* Definitions for the Opencores i2c master core
*/
// Rückgabewerte für non blocking read
#define I2C_OK 0
#define I2C_NO_ACK 1

/* --- Definitions for i2c master's registers --- */

/* ----- Read-write access */

//#define I2C_PRER 0x00 /* Low byte clock prescaler
register */
#define I2C_CTR 0x00 /* Control
register */

/* ----- Write-only registers */

#define I2C_TXR 0x01 /* Transmit byte
register */
#define I2C_CR 0x03 /* Command
register */

/* ----- Read-only registers */

#define I2C_RXR 0x02 /* Receive byte
register */
#define I2C_SR 0x04 /* Status
register */

/* ----- Bits definition */

/* ----- Control register */

#define I2C_EN (1<<16) /* Core enable
bit: */

/* 1 - core is enabled */
/* 0 - core is disabled */



SpartanMC

I2C Master 7

#define I2C_IEN (1<<17) /* Interrupt enable
bit */

/* 1 - Interrupt enabled */
/* 0 - Interrupt disabled */
/* Other bits in CR are reserved */

/* ----- Command register bits */
#define I2C_STA (1<<7) /* Generate (repeated) start
condition*/
#define I2C_STO (1<<6) /* Generate stop
condition */
#define I2C_RD (1<<5) /* Read from
slave */
#define I2C_WR (1<<4) /* Write to slave */
#define I2C_NAK (1<<3) /* Acknowledge send to
slave */

/* 0 - ACK */
/* 1 - NACK */

#define I2C_ACK 0
#define I2C_IACK (1<<0) /* Interrupt acknowledge */

/* ----- Status register bits */

#define I2C_RXACK (1<<7) /* ACK received from
slave */

/* 0 - ACK */
/* 1 - NACK */

#define I2C_BUSY (1<<6) /* Busy bit */
#define I2C_AL (1<<5) /* Arbitration lost */
#define I2C_TIP (1<<1) /* Transfer in
progress */
#define I2C_IF (1<<0) /* Interrupt flag */

/* bit testing and setting macros */

#define ISSET(reg,bitmask) ((reg)&(bitmask))
#define ISCLEAR(reg,bitmask) (!(ISSET(reg,bitmask)))
#define BITSET(reg,bitmask) ((reg)|(bitmask))
#define BITCLEAR(reg,bitmask) ((reg)|(~(bitmask)))
#define BITTOGGLE(reg,bitmask) ((reg)^(bitmask))
#define REGMOVE(reg,value) ((reg)=(value))

typedef volatile struct {
volatile unsigned int ctrl; // (r/w)
volatile unsigned int txr; // (r/w)
volatile unsigned int rxr; // (r)
volatile unsigned int cmd; // (r/w)



SpartanMC

I2C Master 8

volatile unsigned int stat; // (r)
} i2c_master_regs_t;

#ifdef __cplusplus
}
#endif

#endif //define __I2C_MASTER

3.8. Basic Usage of the I2C Registers

The structure shown above serves as interface between hardware and software. It can
be used directly in a C program by including the header file <i2c_master.h> . This
section presents several quite simple examples to illustrate the usage of this register.

First, assume that I2C_MASTER_0 is a pointer which contains the physical address
of an I2C master.

• Example 1 : Enable the I2C master and set the prescaler to 134

I2C_MASTER_0->ctrl = I2C_EN | 134;

• Example 2 : Send write request to the slave at the address 0x70

I2C_MASTER_0->txr = 0x70 << 1; // or 0xE0
I2C_MASTER_0->cmd = I2C_WR | I2C_STA;

• Example 3 : Check if the current 8-bit packet has been transfered

/* wait as long as TIP is set */
while(I2C_MASTER_0->stat & I2C_TIP);

/* do something here */

• Example 4 : Check if a not acknowledge has been received

if(I2C_MASTER_0->stat & I2C_RXACK)
 return I2C_NO_ACK;

• Example 5 : Write a constant value 0xFF to the slave

I2C_MASTER_0->txr = 0xFF;
I2C_MASTER_0->cmd = I2C_WR;

• Example 6 : Send read request to the slave at the address 0x70

I2C_MASTER_0->txr = (0x70 << 1) + 1; // or 0xE1
I2C_MASTER_0->cmd = I2C_WR | I2C_STA;

• Example 7 : Read one last packet from the slave

int v;



SpartanMC

I2C Master 9

I2C_MASTER_0->cmd = I2C_RD | I2C_NAK | I2C_STO;
while(I2C_MASTER_0->stat & I2C_TIP);
v = I2C_MASTER_0->rxr;

Note: Sometimes, a hardware manufacturer may give an 8-bit slave ID instead of a
7-bit address. This ID is actually equal address << 1 and implies that the
direction bit is 0. Therefore, it can be sent to the slave as write request directly
and ID + 1 can be used as read request.


	I2C Master
	Communication
	Bus Arbitration
	Peripheral Registers
	I2C Register Description
	CONTROL Register
	TX Register
	RX Register
	COMMAND Register
	STATUS Register
	I2C C-Header i2c_master.h for Register Description
	Basic Usage of the I2C Registers



